Powder Coatings

Impact of Pigment Finishing on Powder Coating Performance

SUDARSHAN

Bonnie Piro

Technical Marketing Manager Sudarshan North America, Inc

Pigment Classification

Pigment Selection Process

• Pigment Manufacturing Process

• Examples of Chemistry and Finishing on Performance

Pigment Classification

Pigment Selection Process

A pigment is only observed as technically valuable to a customer if it performs in the correct manner required for the application it is used for.

>Each market segment has unique technical requirements

Powder Coatings – Pigment Requirements

- Excellent range of heat fast colors
- ➤Good light and weather fastness
- ➤Good acid- alkali resistance
- ➤Good dispersibility
- ➤Good over bake resistance
- ➤Good rheology and flow
- Non-migratory during extrusion
- Compatible with wide number of polymers
- Compatible with TGIC and non TGIC curing agent

COLORANTS - PHYSICAL PARAMETERS

- Oil absorption
- Surface Area
- Pigment Volume Concentration
- Average particle size
- Particle distribution
- Particle shape
- Texture
- Surface treatment
- Partial Solubility

- Moisture Content
- Conductivity
- Refractive Index
- pH
- Viscosity
- Nucleating
- Shear Stability
- Inertness
- Hardness
- Density

Pigment parameters directly impact application performance

PIGMENT SYNTHESIS

• The first manufacturing step(s) determine the chemical identity of the pigment.

• Crude pigment is the end product of the synthesis.

• Finishing and surface treatment provide the end use properties.

~75-80% _____ of the pigment performance

EFFECT PIGMENT MANUFACTURING

Example of substrate coated with metal

oxide

Finishing Steps – Impact on Application.....in general

Pigments for Plastics

- No additives or surface treatments
- Spray or Spin Flash Dryer
- Jet mill or hammer mill
- No fillers
- Plastic formulations require "clean", softer and smaller in size for improved polymer dispersion.

Pigments for Coatings

- Additives and surface treatments are used to improve dispersing and stability
- Tray dryers or continuous belt dryers
- Hammer mills or air classifiers
- Fillers can be used
- Coatings formulations are the most complex resulting in a wide varjety of finishing steps.

Powder Coating

Pigments for Inks

- Additives and surface treatments can be used especially for the more "high tech" inks like inkjet
- A variety of drying methods are used
- Different pulverizing methods are used
- Fillers are rarely used
- Ink formulations span the gamut of "low to high tech" thus pigments "designed" for another application maybe more appropriate.

POWDER COATING DISPERSION – IS IT MORE LIKE A LIQUID DISPERSION OR PLASTICS DISPERSION?

Liquid

- <u>Single pigment dispersion</u>.
- Dispersant used is matched to the pigment chemistry.
- Carrier resin is typically nonfunctional to the dispersing of the pigment.
- Pigment loading is maximized but dictated by pigment chemistry and rheology of the dispersion.
- Final product color is achieved by mixing the single pigmented dispersions.
- <u>Shading is done in the mixer</u> as the final step.

Powder

- <u>Multiple pigment dispersion</u>.
- No dispersing agent is typically used but other additives are part of the formulation.
- Pigment loading is dictated by opacity needs and other physical property limitations of the formula.
- Final product color is achieved in the extruder chamber.
- <u>Shading is done via re-extrusion</u> with added "raw" pigment powder.

Plastic

- Can be <u>single pigment master</u> batches (high pigment loading) <u>or</u> <u>multiple</u> pigment dispersion.
- No dispersing agent is typically used but other additives are part of the formulation.
- Pigment loading is dictated by pigment chemistry for master batches and by physical property limitations for the final product needs.
- Final product color is achieved by mixing single pigmented master batches and re-extruding or from the mixed pigment extrusion.

Answer: It depends on the pigment chemistry (CI)

Examples of Pigments on Powder Coating Performance

PB 15:3 -	Finishing Differences (Plastic/Coating/Ink)
PY 83 -	Particle Size Differences
PY 83/PY 139 - PO 36/PO 64/PO 34 -	Similar Color; Different Chemistry Similar Color; Different Chemistry
PB 15:4 -	Resin Formulation Differences
PR 170 -	Same Chemistry; Shade Differences
Mica -	Surface Treatment Chemistry

Direct

Reverse

* 160 inch-pounds is maximum of test

Finishing Differences

Powder Coating PB15:3 - Tint Tone L, 10:90 (Strength)

Powder Coating PB15:3 - Overbake Stability, dE - 60 minutes @ 425°F

Finishing Differences

TEM: PY83

Particle Size Differences

Transparent

Opaque

Particle Size Differences

Particle Size Differences

Powder Coating PY83 Overbake Stability, dE – 60 minutes @ 425° F

Chemistry Differences Similar Color

Chemistry Differences Similar Color

Powder Coatings PY83 and PY139 Pellet Flow, mm

Chemistry Differences Similar Color Space

Chemistry Differences Similar Color Space

PO36, PO64, PO34 Overbake Stability, dE – 60 minutes @ 425° F 7.00 6.64 6.00 5.76 PO 5.00 36 64 34 36 64 34 36 64 34 36 64 34 Overbake Stability, dE 00°F 3.65 3.50 2.44 2.00 1.70 1.14 0.94 0.84 1.00 0.76 0.75 0.67 0.00 10:90 TiO2 50:50 TiO2 98:2 CB Mass Tone

Powder Coatings

Resin Chemistry Differences Finishing Differences

Same Chemistry Yellow Shade vs Blue Shade

Powder Coating PR170 Pellet Flow, mm

Surface Treatments for Pearlescent Pigments

- Why use a surface treatment or encapsulation?
 - To slow or prevent an undesirable reaction from occurring
 - Photo degradation
 - Humidity effects
 - To change the rheology of the system
 - Improve dispersion
 - Compatibility with the system
 - ✓ To improve overall performance
 - Durability
 - Adhesion
 - To reduce or eliminate and undesired effect in the formulation
 - Cure inhibition or acceleration

Surface Treatments for Pearlescent Pigments

SUDARSHAN

QUESTIONS?
