Novel Synthetic Silica for Matting Powder Coatings

Powder Coating Summit 2021

Bernhard Resch | Evonik Corporation September 23, 2021

Current Technologies for Matting Powder Coatings

- Incompatibility:
 - 2-component dryblends (co-grind)
 - Chemical matting by introducing various binders or crosslinking reactions
- Surface Modifiers:
 - Micronized waxes as such as polyolefins, paraffins, and others
- Inorganic Fillers:
 - Coarse particle size barium sulfate, aluminum trihydroxide (ATH), calcium carbonate, nepheline syenite, Wollastonite, among others.
 - Commonly used due to their low oil absorption, but often have a broad particle size distributions with varying
 particle shapes as well as specific gravity increase.

Spherical Silica Technology

- Spherical Precipitated Silica:
 - A unique precipitated amorphous silica that is made with a patented continuous loop reactor process
 - Very uniform with a narrow particle size distribution, for a defect free finish
 - Available in (3) different d(50) particle sizes, ranging from 5.5 to 15µm.

Spherical Silica Technology

- Spherical Precipitated Silica:
 - These particles have higher oil absorption listed than the conventional fillers used, however the particles are essentially nonporous.
 - Lower specific gravity
 - Properties unlike conventional precipitated Silica

	Particle	Particle	Oil	Specific	Specific Surface	
Description	Size D ₅₀ µm	Size D ₉₅ μm	Absorption ml/100g	Gravity g/cm ³	Area (BET) m²/g	Refractive Index
Barium Sulfate (BaSO ₄)	3.0	<15	11	4.4		1.64
Aluminum Trihydroxide (ATH)	11.5	<36	20	2.4	2.7	1.57
Spherical Silica 0111	5.5	<20	40	2.0	< 12	1.46
Spherical Silica 0112	10	<25	50	2.0	< 12	1.46
Spherical Silica 0115	15	<30	45	2.0	< 12	1.46
Precipitated Silica 440	14.5		270	2.0	500	1.46

Evaluation of Spherical Silica Technology for Matting Powder Coatings

- Superdurable polyester HAA formulation
- Comparison to Barium Sulfate and Aluminum Trihydroxide (ATH)
- Evaluate
 - Matting efficiency
 - Coating performance
 - Pencil Hardness
 - Conical Bend Flexibility
 - Reverse Impact and Cupping
 - Corrosion
 - UV Weatherability
 - Ease of processing

Formulation and Process Parameters – Polyester HAA Black Super Durable

Formulation	Raw Material	20% Matting Agent
Resin	Super-durable polyester (AV=35)	73.6
Crosslinker	НАА	3.9
Flow aid	Acrylic polymer on silica carrier	1.0
Degassing	Benzoin	0.5
Carbon black	Carbon black pellets	1.0
Matting Agent*	Various Fillers	20.0
Total		100

Processing Parameters				
Extruder APV 19mm Twin Screw 500 RPM				
Set Temp °F	Zone 1/2	212/212		
Actual Temp °F Zone 1/2		214/212		
Extrudate Temp °F IR gun		225-234		
Torque	Depending on formula	40-60%		
Mill	Strand Benchtop Mill			
Screen	[mesh]	140		
Powder cure	min / °F	15 / 400		

*This powder coating formulation does not any matting waxes

Manufacturing of Powder Coatings

Matting Efficiency and Pill Flow – Polyester HAA Black Super Durable

Filler Loading Levels

	Gloss	Pill flow*
Modification	60°	[mm]
Control	97	75
20% BaSO ₄ (fine 3μm)	82	69
20% BaSO₄ (coarse 15µm)	69	76
20% ATH (11.5μm)	64	66
20% 0111	53	54
10% 0111/ 10% 0115	49	57
20% 0115	45	56
20% 0112	44	60

*Pill flow (inclined plate flow) uses 1g sample @400°F

This is an indirect measurement of melted powder coating viscosity.

Higher numbers in mm (distance) means, melt viscosity is lower. Lower numbers in RED means higher melt viscosity.

Matting Efficiency and Pill Flow – Polyester HAA Black Super Durable

	Gloss*	Pill flow
Modification	60°	[mm]
Control	97	75
5% 0115	82	70
10% 0115	69	61
15% 0115	57	64
20% 0115	45	56
25% 0115	36	55
30% 0115	31	58

*Average of multiple panels;

Std. Dev. 1 GU

Cross-Sectional Analysis – Polyester HAA Black Super Durable

* 1mil = 25.4µm

Matting Efficiency in Combination with Matting Waxes

	Gloss (60°)		
Modification	No wax	1% wax*	2% wax*
20% 0111 (5.5 µm)	53	49	
20% 0112 (10 µm)	44	41	31
20% 0115 (15 µm)	45	41	30
20% ATH (11.5 µm)	64	54	41
20% BaSO₄ (15 μm)	69	67	

* Polyolefin matting wax

11 | Powder Coating Summit | September 23, 2021 | Novel Synthetic Silica for Matting Powder Coatings

Appearance vs. Conventional Fillers – Polyester HAA Black Super Durable

Matting Mechanism and Surface Profilometry* – Polyester HAA Black SD

eading Beyond Chemistr

13 | Powder Coating Summit | September 23, 2021 | Novel Synthetic Silica for Matting Powder Coatings

Matting Mechanism and Surface Profilometry – Polyester HAA Black SD

Matting Mechanism and Surface Profilometry – Polyester HAA Black SD

* Images created with Hommel Tester T8000

15 | Powder Coating Summit | September 23, 2021 | Novel Synthetic Silica for Matting Powder Coatings

Temperature Dependence Matting Effect

Polyester HAA Black Super Durable*

Temperature Dependence Matting Effect – MDF Coating

Low cure gray polyester / epoxy hybrid (50:50) with nepheline syenite as reference filler; no matting waxes.

Physical Properties - Conical Mandrel Test – Polyester HAA Black SD

Modification	Conical Mandrel		
Control	Pass		
5% 0111	Pass	20% 0111	20%
10% 0111	Pass	sperter 30	
15% 0111	Pass		
20% 0111	Pass		
5% 0115	Pass		
10% 0115	Pass		
15% 0115	Pass		And Andrew Property of
20% 0115	Pass		
20% BaSO ₄	Pass	209/ 0115	20% A
5% 0115 / 15% BaSO ₄	Pass	20% 0115	-
20% ATH	Fail		
5% 0115 / 15% ATH	Fail		

Substrate: CRS B1000

0

Physical Properties – Cupping Test – Polyester HAA Black SD

	Cupping
	6mm/s
Modification	failure at [mm]
Control	2.0
5% 0111	4.4
10% 0111	8.6
15% 0111	7.8
20% 0111	4.0
5% 0115	5.6
10% 0115	6.9
15% 0115	9.7
20% 0115	8.9
20% BaSO ₄	1.5
5% 0115/15% BaSO ₄	2.1
20% ATH	1.4
5% 0115/15% ATH	1.9

19 | Powder Coating Summit | September 23, 2021 | Novel Synthetic Silica for Matting Powder Coatings

Physical Properties - Cupping Test – Polyester HAA Black SD

Physical Properties - Reverse Impact Test – Polyester HAA Black SD

	Reverse Impact	
Modification	40 in-lb @ 3.0 mils	
Control	some cracking	
5% 0111	some cracking	
10% 0111	no cracking	
15% 0111	no cracking	
20% 0111	minor cracking	
5% 0115	minor cracking	
10% 0115	no cracking	
15% 0115	no cracking	
20% 0115	minor cracking	
20% 0111/0115	minor cracking	
20% BaSO ₄	some cracking	
5% 0115/ 15% BaSO₄	some cracking	
20% ATH	severe cracking	
5% 0115/ 15% ATH	severe cracking	

21 | Powder Coating Summit | September 23, 2021 | Novel Synthetic Silica for Matting Powder Coatings

Physical Properties - Pencil Hardness Test – Polyester HAA Black SD

	Mitsubishi Pencil Set
Modification	Pass Rating
Control	Н
5% 0111	Н
10% 0111	2H
15% 0111	3H
20% 0111	3H
5% 0115	2H
10% 0115	3H
15% 0115	4H
20% 0115	5H
25% 0115	7H*
30% 0115	9H*
10% 0111/ 10% 0115	4H
20% BaSO₄	Н
5% 0115/ 15% BaSO₄	3H
20% ATH	3H
5% 0115/ 15% ATH	3H

Test Protocol

 Pencil hardness testing according to ASTM D3363

Results

- In addition to improved flexibility, coating systems containing Spherical Silica particles also improve in surface hardness.
- These properties often stand in contradiction to each other.

* difficult to measure / test

Spherical Silica Technology in Matting UV Cure Powder Coatings*

Tested Formula:

- White UV powder coating (2.0 2.5mils)
- Standard durable polyester backbone
- Compare to / blend with $BaSO_4$ filler
- Test Parameters and Results:
 - Gloss reduction larger Spherical Silica particles have stronger matting effect
 - Impact resistance incremental improvement with increased loading levels of Spherical Silica
 - Solvent resistance no change
 - Conical mandrel all no cracking
 - Adhesion no change

	Gloss	Impact [in-lb]	
Modification	60°	Direct	Reverse
Control (20% BaSO ₄)	90		
5% 0111 (15% BaSO ₄)	86	50	10
10% 0111 (10% BaSO ₄)	85	60	20
20% 0111 (no BaSO ₄)	81	80	40
5% 0115 (15% BaSO ₄)	83	40	10
10% 0115 (10% BaSO ₄)	82	60	20
20% 0115 (no BaSO ₄)	74	60	40

* Results provided by Kevin Otto at Keyland Polymer UV Powder, LLC

Spherical Silica Technology in Matting UV Cure Powder Coatings*

	Gloss	Impact [in-lb]	
Modification	60°	Direct Reverse	
Control (20% BaSO ₄)	90		
5% 0111 (15% BaSO ₄)	86	50	10
10% 0111 (10% BaSO ₄)	85	60	20
20% 0111 (no BaSO ₄)	81	80	40
5% 0115 (15% BaSO ₄)	83	40	10
10% 0115 (10% BaSO ₄)	82	60	20
20% 0115 (no BaSO ₄)	74	60	40

* Results provided by Kevin Otto at Keyland Polymer UV Powder, LLC

Spherical Silica Technology in Matted FEVE Powder Coatings*

- Little to no effect on processing conditions
- Passed FGIA (AAMA 2605) specifications (adhesion, flexibility)
- Gloss reduction from high 70s to low 50s at 60° angle (20% use level)
- Smoother surface appearance than other commercial matting agents
- Spherical Silica technology eliminated voids seen in commercial filler technology
- Spherical Silica technology produced raised textured appearance under microscope

Left image: 100% FEVE white with 20% commercial filler/ matting agent Right image: 100% FEVE white with 20% Spherical Silica

* Results provided by Connie Przeslawski at AGC Chemicals America, Inc.

QUV-A Exposure – Polyester HAA Black Super Durable

Gloss change Gloss Retention (%) ---Control

Corrosion Test – Polyester HAA Black SD – 1000 hrs B117 Salt Fog Cabinet

Substrate: CRS B1000 DFT: 75µm / 3 mils

Calculated Powder Specific Gravity and Coverage – Polyester HAA Black SD

Modification	Gloss	Specific Gravity	Theoretical coverage [sq.ft./lb] @ 2.5mils	Coverage
Control	97	1.25	61	111%
15% 0111	63	1.33	58	104%
15% 0115	57	1.33	58	104%
20% Aluminium Trihyroxide	64	1.39	55	100%
5% 0115 / 15% Portafill A40	61	1.38	56	101%
12.5% 0115	63*	1.32	58	106%
10% 0115 / 10% BaSO4	62*	1.41	55	99%
20% Barium Sulfate	82	1.46	53	95%

* Estimated gloss level based on linear matting performance

Summary of Performance Characteristics – Spherical Silica Technology for Matting Powder Coatings

- Improved matting efficiency versus ATH or BaSO₄
- Matting efficiency is linear and predictable
- Excellent uniformity and consistent appearance across substrate
- Does not affect adhesion but improves hardness and flexibility
- Lower specific gravity allows for greater coverage
- Choose between the smaller 0111 or larger 0112 and 0115 particles, depending on desired coating appearance and performance.

Acknowledgement

- Mr. Andreas Feller
- Dr. Thomas Klotzbach
- Ms. Cornelia Alzer
- Dr. Annett Halbhuber
- Ms. Maria Nargiello
- Dr. Karl Gallis
- Mr. Will Hagar
- Dr. Sascha Herrwerth
- ChemQuest Powder Coating Research
 - Mr. Kevin Biller, Mr. Nathan Biller and Mr. Nick Page

