

New Defoaming Surfactants

"It can protect"

Smriti Arora End Use Specialist – Special Coatings

CTT 2021

O BYK

A member of **C ALTANA**

Agenda

Why we need surfactant Surface Defects

Poor metal substrates

Non-polar plastic substrates/ parts

Evolving and challenging spray applications

It is possible to meet the above-mentioned challenges by using a specific silicone-based chemistry

Chemistry of Surfactant Silicone, A Versatile Additive Chemistry

Silicone Surfactants A Versatile Additive Chemistry for Water-borne Systems

Silicone Surfactants **Basic Molecule**

Silicone Surfactant in Water-borne Systems Structures

Silicone Surfactant in Water-borne Systems Overview of Surfactants

C BYK

Silicone Surfactant in Water-borne Systems Overview of Surfactants*

Reduction of dynamic surface tension	Tri-Siloxanes Wetting of low polar substrates	Universal Silicone Surfactants	Silicone Surfactants Improved leveling	Defoaming Silicone Surfactants
 Small and "fast" surfactants Strong impact on reduction of dynamic surface tension 	 Fast Excellent spreading on low polar substrates 	 Ideal for all kind of substrates Very wide resin compatibility 	 Wide resin compatibility Ideal for water-borne UV systems Good performance with porous substrates Very good leveling 	 Especially (but not only) suitable for spray applied systems Good leveling properties Defoaming

Surfactants have one property in common: great substrate wetting properties

*The effect of surfactants is system dependent

New Defoaming Surfactants Main Benefits

Highly active silicone surfactants with 100% active substance (no solvent evaporation)

New Defoaming Surfactants Product Properties

100% active substance

For water-borne systems (organic co-solvent content of >3%)

> For critical substrates like plastics or poorly treated, dirty metal surfaces

> > Can be post-added as troubleshooting additive

Suitable for all kind of application areas, recommended for spray application

Prevent Foam Stabilization In a Water-borne 2-pack PUR System

System: Formulation 2: 2-pack PUR based Comparison Control Additive A Additive **B** Additive dosage: 0.2% active substance on component A 5

Reduction of Static Surface Tension In a 2-pack PUR System

Excellent Leveling In a Spray-applied Clear-Coat based on a 2-pack PUR System

Excellent Leveling In a Spray-applied Clear-Coat based on a 1-pack PUR System

System: Formation 1: 1-pack PUR

Additive dosage: 0.1% active substance on total formulation

Co-Solvent Content: 8% Co-solvent

Application method: Spray application on PMMA substrate

Prevent Foam Stabilization During Paint Production

Brilliant Visual Appearance After Spray Application in a 2-pack PUR System

System: Formulation 3: 2-pack PUR based Additive dosage: 0.2% active substance on total formulation

Co-solvent content: 4.1% in Component A 6.6% in total formulation HVLP-Spray application on PMMA-Substrate

Excellent Performance As a Trouble Shooting Additive

Problem: Unknown contamination caused cratering after spray application

System: Water-borne acrylic melamine baking system 15% organic co-solvent content (Dowanol PM : ethanol = 1:1)

Application: Spray application

Additive dosage: Active substance on total formulation

Customer paint *without* Additive A

Customer paint with post-addition of 0.5% Additive A

Excellent Performance As a Trouble Shooting Additive

O BYK

Summary

- Low polar, silicone base chemistry helps drops surface tension to improve flow and does not stabilize foam
- New defoaming surfactant chemistry focuses on excellent substrate wetting and good levelling with a strong defoaming effect
- Silicone-based products, therefore do evaluation of inter-coat adhesion and re-coatability in a ladder study is highly recommended

Thank you for your attention.

