

The Dispersion Triangle for Carbon Black Pigments

Richard Abbott

Natalie Harris and Josh Baugh

September 8th 2021

CHALLENGE TESTED

FAMILIAR BONDS

CON KNO

COMPOUND KNOWLEDGE

MICRO MATTERS

BEYOND DURABLE

Table of Contents

INTRODUCTION DISPERSION TRIANGLE CONCEPT PIGMENT SELECTION FORMULATION DISPERSION PROCESS WHY USE THE CONCEPT ?

Dr. RI CHARD ABBOTT

- Principal Scientist (Coatings) with over 20 years of working with carbon black in a variety of liquid systems.
- Based at Birl a Carbon headquarters &technical centersince 2003.
- Responsi bl e f or devel opi ng newcarbon bl acks and l everagi ng exi sti ng products i nt o newand di f f erent appl i cati ons.
- Contacts: <u>Richard. Abbott@dityabirla.com</u>
- <u>Natalie. Harris@adityabirla.com</u>
- Josh. Baugh@di tyabi rl a. com

Introduction

- Today we will be discussing the concept of the performance triangle.
- In turn we will cover
 - Pigment selection
 - Formulation
 - Dispersion

SHARE THE STRENGTH

PIGMENT SELECTION

Pigment Selection

- For carbon blacks there are four fundamental properties that help determine the end performance
 - Particle size distribution
 - Aggregate size and shape distribution
 - Pore size distribution
 - Surface chemistry distribution

Surface Area (Particle size) is the primary determinant of color performance.

- Sol vat ed CAB Formul at i on.
- Dispersion via chipping on 2 roll mill
- The chi p approach ensures a hi gh l evel of di spersi on

15 g CAB chi p (15-40%CB) 60 g N-butyl acetate 75 g 3/32 steel shot

1 hour shake ti me

• Hi gher surf ace area gi ves hi gher J et ness.

SHARE THE STRENGTH

 Sol vent borne formul at i on, so the effect of treatment becomes very apparent at high surface Full Shade/Masstone Performance

Tinting Product Selection Involves Trading Off Strength and Tone

Pigment Selection Additional Criteria

Aggregate size and shape distribution

Higher structure carbon blacks will create a higher viscosity, as well as providing an easier dispersion. This will usually come at a minor cost in color performance.

Pore size distribution

Outside of conductive coatings, this is not normally an important parameter

Surface chemistry distribution

Post-treated carbon blacks have an acidic surface. This is important in how the pigment interacts with other formulation ingredients

Formulation

- The formulation chosen has a major effect on the performance of the carbon black
- Some general comments
 - Ensure adequate levels of dispersant (in terms of %SOP)
 - Check dispersant/resin compatibility
 - In solventborne applications, post-treated/acidic products tend to perform better than untreated products
- Good color/dispersion in a concentrate/grind doesn't necessarily mean good color in a final coating.

High Color Carbon Blacks:

Waterborne Ladder study shows expected high dispersant demand for optimum performance

Solventborne Automotive:

ADITYA BIRLA BIRLA CARBON

Fall off in performance at different loadings reflects different surface characteristics

দ্রুত্র

Effect of Dispersant Choice: WB Automotive

Large swings in both jetness and bluetone

ট্র

Effect of Dispersant Choice : Leather Coating

Predominantly a let down effect

ADITYA BIRLA

BIRLA CARBON

Dispersion

ADITYA BIRLA

- Dispersion covers
 - Pigment wetting
 - Dispersion process
 - Time/Energy
 - Media Size and density (if applicable)
 - Pre-mixing/bead breakdown (if applicable)

Stages of Dispersion Process

Premix Equipment

SHARE THE STRENGTH

- Wetting is the first step in the dispersion process
- Breakdown of beads and agglomerates in to smaller fractions
- Removal of entrained air from the surface of the carbon black and replacing it with liquid vehicle
- Millbase viscosity and equipment geometry is important
 - Geometry should promote rolling laminar flow (Doughnut Effect)
 - High peripheral speed generates shear within liquid
 - Viscosity too low = splashing, aeration and bubbles
 - Viscosity too high = lack of movement, low transmission of mechanical energy

- Bead or shot mills spin pegs or disks at high speed in a cylindrical chamber partially filled with small beads or shot
- Small dense beads provide a degree of impact as well as shear

Low & Medium Viscosity Milling Equipment

- Ball mills use larger tumbling balls to crush the pigment
- Ball mills are older, batch technology but still very effective
- Attritors fall mid way between the two techniques

Bead Milling

Selection Considerations for high color milling

- Energy density
 - Usually dictated by cooling capability, a smaller chamber will allow for higher energy densities, which is a significant help to dispersing higher color pigments
- Hydraulic packing
 - How is the mill preventing hydraulic packing of the media, close fitting blades, back flow pumping or other characteristics
- Screen size
- Single/multiple pass versus recirculation

Media Size and Density

Media type has significant impact on color development

SHARE THE STRENGTH

- ADITYA BIRLA BIRLA CARBON
- Standard Laboratory Shaker
- Finer media gives rise to a jetter coating
- Beaded products will need to be broken down before grinding with fine media
- Finer media has higher risk of hydraulic packing

High Color Carbon Blacks

Take a lot of time/energy to disperse fully

SHARE THE STRENGTH

- Standard Laboratory Shaker
- 0.6 0.8 mm Zirconia beads
- With a well matched dispersant even 16 hours of shaking has not reached the ultimate level of performance
- For production efficiency there will be a time/energy and performance balance that will be particular to any given location and product

ADITYA BIRLA

Summary

- We discussed the concept of the performance triangle.
- Covering in turn
 - Pigment selection
 - Formulation
 - Dispersion
- But why this concept, why tie them together ?

PIGMENT SELECTION

Considering all parts of the triangle

Enables proper product selection for any given application

ADITYA BIRLA

BIRLA CARBON

What about constraints ?

- As a formulator, constraints are common. You must use pigment X, or the production time is limited so you can only disperse for Y time
- Ultimate example Military paint
 - Pigment and formulation specified
 - Performance range also specified.

SHARE THE STRENGTH

PIGMENT SELECTION

ADITYA BIRLA

Thank you and Any Questions ?

SHARE THE STRENGTH

Dr. RI CHARD ABBOTT

- Principal Scientist (Coatings) with over 20 years of working with carbon black in a variety of liquid systems.
- Based at Birl a Carbon headquarters &technical centersince 2003.
- Responsi bl e f or devel opi ng newcarbon bl acks and l everagi ng exi sti ng products i nt o newand different appl i cati ons.
- Contacts: <u>Richard. Abbott@dityabirla.com</u>
- <u>Natalie. Harris@adityabirla.com</u>
- Josh. Baugh@di tyabi rl a. com

Thank You

SHARE THE STRENGTH

SHARE THE STRENGTH

