

## High Performance Acrylic Latex Technologies for Low-VOC Concrete Sealers

Coatings Trends & Technologies Conference September 2021



## Agenda

- ODecorative Sealer Performance Challenges
- Oconcrete composition and design
- OPOlymer and latex design attributes
- Oconcrete sealer performance across array of acrylic latex emulsion variables
- NEW TECHNOLOGY Self-Crosslinking Acrylic for Concrete Sealer





## Decorative Sealer Performance Challenges



## Decorative Concrete Sealer Performance Challenges

#### **Protect the surface**

- Output Output
- O Prevent degradation from stains
- Tough film for challenging use applications – garage floor, high foot traffic



#### **Moisture Release**

- Moisture is free to leave the concrete substrate through the coating film
- A tight film will trap water in the concrete resulting in blushing of the coating
- Water whitening a common failure for conventional waterbased latex
- In extreme cases, blistering and severe cracking may result



## Decorative Concrete Sealer Performance Challenges

#### **Maintain Wet-Look**

- Solvent based systems traditionally perform well
- Solution polymer flow allows continuity of penetration and wetting into the concrete leading to a rich "wet-look"
- Latex polymer particle flow inhibits penetration continuity and may result in glossy but usually not wet appearance

#### **Durability over time**

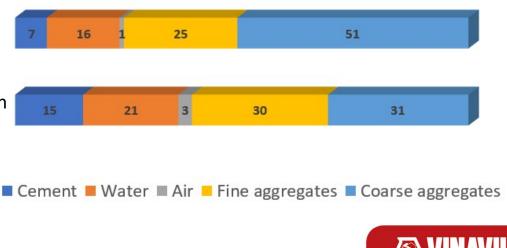
- O Withstand weather elements sun, rain, snow/ice melt
- Maintain glossy appearance
- Keeps uniform film for an extended period



# Concrete Composition and Design

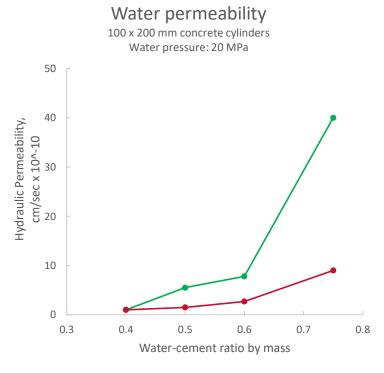


# Concrete composition and design play a role in performance of sealed concrete


- Mix 1 has a water-cement ratio of 0.7 and total cement paste of 23%
- Mix 2 has a water-cement ratio of 0.6 and total cement paste of 36%
  Mix 1: Lean ceme

Mix 1: Lean cement mix with large size aggregates




Mix 2: Rich cement mix with small size aggregates

Range in proportions of materials used in concrete by volume



\*Figure adapted from *Design and Control of Concrete Mixtures, 14th Edition*. Portland Cement Association, 2002. Used by permission.

# Concrete permeability sets the base potential of a surface coating to experience challenge of water moisture



<sup>---1</sup> Day Moist, 90 Days in Air ---7 Days Moist, 90 Days in air

#### <u>Concrete Permeability Factors</u>

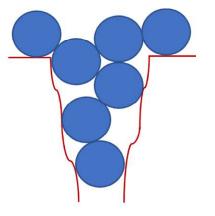
- Quality of the water-cement paste
- Opermeability of the aggregate and cement
- Increasing the moist-curing period decreases permeability
- A Higher water-cement ratios in the concrete mix give higher water permeability



\*Chart adapted from *Design and Control of Concrete Mixtures, 14th Edition*. Portland Cement Association, 2002. Used by permission.

# Concrete porosity impacts sealer performance

**Concrete Porosity** 


- Ocapillary and contraction pores occur in formed concrete and range in diameter from 10-1000 nanometers
- Ocapillary porosity may be reduced from lower water/cement ratio or use of plasticizers in concrete mix
- OPORES IN THE 100-400 NM range are quite common but pose an interesting challenge for latex particle flow



# Concrete porosity impacts sealer performance

Idealized Concrete Pore 200 nm top diameter Solution Acrylic Flow/Penetration

Latex Emulsion Flow/Penetration



- Solution acrylic flows deeply into small pores; densely packed polymer.
- Latex emulsion particle flow constrained; gaps in polymer packing.



Concrete finishing effects tend to close surface pores and reduce penetration potential for sealers

- Stamping of textures
- Orinding and polishing to achieve terrazzo-style appearance
- Abrasive blasting to remove concrete to a sufficient depth to expose aggregate



Terrazo style finish

Stamped Concrete



# Concrete composition and design play a role in performance of sealed concrete

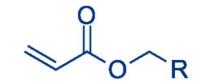
**O** Summary of the role of concrete composition

- Ocomposition and curing conditions of concrete impact its inherent water permeability
- Sealers used on higher permeability concrete will experience a larger challenge from moisture transmission below and through the substrate

Tip: Consider evaluating sealer performance on both high permeability and low permeability concretes



## Polymer and Latex Design Attributes




## Polymer and Latex Design Attributes: Monomer Composition

O Hydrophobic monomer characteristics

- Monomers with longer chain or bulky R groups yield more hydrophobic polymer films
- Strong hydrophobicity helps prevent water retention penetration into and through the coating film
- O Hydrophobic polymer may trap moisture at the film/concrete surface if sealer formulation does not release moisture – possible water whitening defect

Acrylate monomer





## Polymer and Latex Design Attributes: Monomer Composition

OPOlymer hardness

∆Higher T<sub>g</sub> polymers

- Ocenerally acceptable for rigid stable concrete surfaces
- O Difficult to formulate at very low VOC levels
- <sup>o</sup>Lower T<sub>g</sub> polymers provide film flexibility
  - Ocould flex and blister with high water pressure behind concrete substrate



## Polymer and Latex Design Attributes: Crosslinking

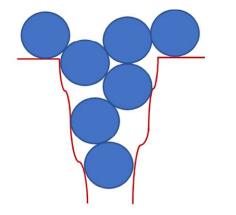
Ocrosslinking serves to toughen a concrete sealer film so it can better withstand

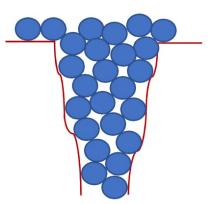
- O Exposure to water and chemicals
- Abrasion from foot traffic
- ٥ Film transfer due to hot tire pickup

Acrylamide chemistries are often used for selfcrosslinking acrylic latex resins



## Polymer and Latex Design Attributes: Particle Size


Semulsion latex polymers come in a variety of particle sizes.


- O Typical average particle size 120-180 nanometers
- Specialty acrylic latex as small as 30-40 nanometers
- The size variations result in different flow possibilities in porous concrete



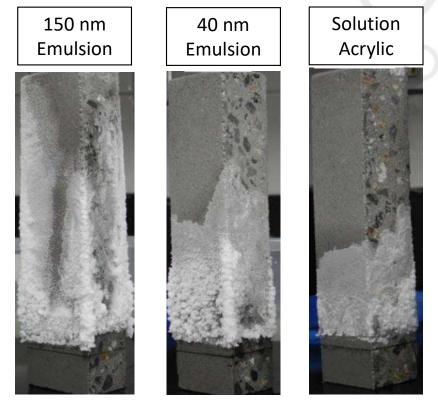
## Polymer and Latex Design Attributes: Particle Size

Latex Emulsion 100 nm Particle size Latex Emulsion 50 nm Particle size





Reducing particle size by a factor of 2 significantly improves pre-coalescence packing of latex.


Idealized Concrete Pore, 200 nm top diameter



## Polymer and Latex Design Attributes: Particle Size

- O Particle size affects penetration
- Operation Demonstrated by relative efflorescence performance
  - $\circ$  Acrylic emulsion, M<sub>v</sub> 150 nm
  - Nanotechnology acrylic, M<sub>v</sub> 40 nm
  - Solvent-based solution acrylic
- Ocoated masonry blocks with bottom portion placed in saturated salt solution and allowed to stand for 7 days

40 nm emulsion sealer penetrates pores blocking salt migration





## Concrete Sealer Performance across varying Acrylic Latex design variables



## Acrylic Latex Design Variables

|                             | Α        | В          | С        | D                   | Е          | F        |
|-----------------------------|----------|------------|----------|---------------------|------------|----------|
| Polymer Type                | Acrylic  | Acrylic    | Acrylic  | VeoVa™<br>Copolymer | Acrylic    | Acrylic  |
| Self-Crosslinking           | Yes      | Yes        | No       | No                  | Yes        | No       |
| Particle Morphology         | Standard | Core-Shell | Standard | Standard            | Core-shell | Standard |
| Particle Size               | 0.1      | 0.08       | 0.15     | 0.15                | 0.08       | 0.03     |
| Polymer T <sub>g</sub> [°C] | 55       | 26         | 16       | 24                  | -15, >100  | 15       |
| MFFT [°C]                   | 30       | 10         | 14       | 13                  | <10        | 5        |



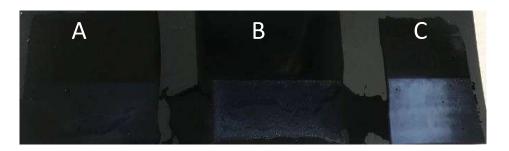
|                     | Polymer A | Polymers B-F |
|---------------------|-----------|--------------|
| POLYMER A, 42.5% NV | 58.04     | -            |
| POLYMER B, 46% NV   | -         | 53.60        |
| WATER               | 36.92     | 41.80        |
| ETHYLENE GLYCOL     | 0         | 0.7          |
| GLYCOL ETHER DPnB   | 1.48      | 1.11         |
| GLYCOL ETHER PPH    | 0.8       | 0            |
| BENZOFLEX 50        | 0.99      | 0.74         |
| BYK 028             | 0.2       | 0.2          |
| ВҮК 333             | 0.1       | 0.1          |
| SURFYNOL 104H       | 0.9       | 0.9          |
| AMMONIA, 28% AQ     | 0.1       | 0.1          |
| HEUR THICKENER      | 0.55      | 0.55         |
| BIT/MIT BIOCIDE     | 0.2       | 0.2          |
| TOTAL               | 100.28    | 100.00       |

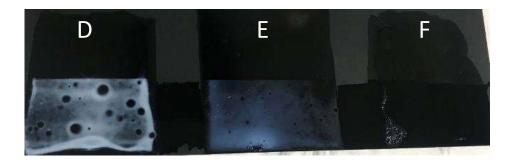
- \* All formulations adjusted to 25% solids by Volume
- Polymer A formulation has different coalescent package and more plasticizer to accommodate its higher MFFT.
- \* Calculated VOC by EPA method 24
  - \* Polymer A: 97 g/L
  - \* Polymers B-F: 79-83 g/L



## Water Contact Angle on Polymer Film

| Polymer | Contact Angle | Shape |
|---------|---------------|-------|
| А       | 82            |       |
| В       | 64            |       |
| С       | 58            |       |
| D       | 42            |       |
| E       | 86            |       |
| F       | 36            |       |


Films cast from the highest Tg polymers, A and E (hard phase of core-shell), showed the highest contact angle



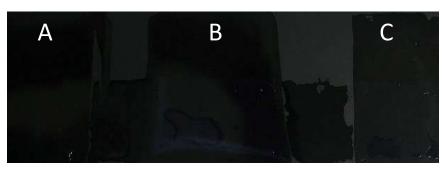

## Early Water Resistance – 2 Hr Dry

#### <u>Procedure</u>

- 5-mil Bird drawdown on scrub panel
- O 2 Hour air dry at Room Temp
- Vater soak for 30 minutes






Polymers A and F gave the best overall results for early water resistance.



## Water Resistance – 24 Hr Dry

#### <u>Procedure</u>

- 5-mil Bird drawdown on scrub panel
- 6 24 Hour air dry at Room
   Temp
- Vater soak for 30 minutes





Sealers from polymers B, C, and E recovered for water resistance after curing for 24 hours.



### Hardness

- 01.5-2 mils Dry Film on Aluminum
- OPOlymers A and E show the best hardness potential
- Polymer F had insufficient dry on Al panel for pendulum hardness test

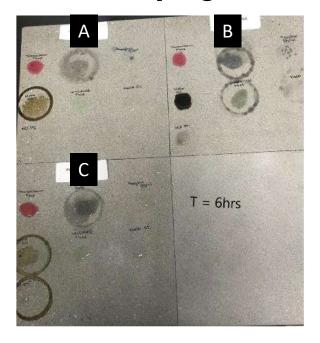
| Polymer | Pencil Hardness<br>7-Day | Konig<br>Pendulum |
|---------|--------------------------|-------------------|
| A       | Н                        | 21                |
| В       | <7B                      | 8                 |
| С       | <7B                      | 3                 |
| D       | <7B                      | 5                 |
| E       | В                        | 32                |
| F       | 3B                       | n/a               |



#### <u>Procedure</u>

- Apply 2 sealer coats on concrete
- 7-Day Dry at room temp
- 6-hr covered chemical spot test
- Observe staining over time

#### Test Layout





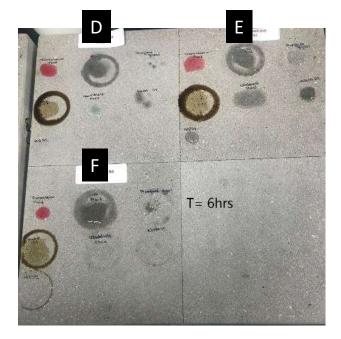

#### Procedure

- Apply 2 coats on concrete
- 7-Day Dry at room temp
- 6-hr covered chemical spot test

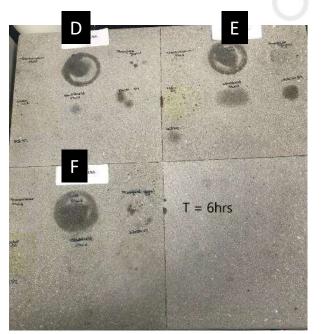
#### **Before Wiping**



#### **After Wiping**







#### <u>Procedure</u>

- Apply 2 coats on concrete
- 7-Day Dry at room temp
- 6-hr covered chemical spot test

#### **Before Wiping**



#### **After Wiping**





#### Time when stain remains after wiping

|                          | Polymer | Transmission<br>fluid | Brake fluid | Propylene<br>glycol | Dirty motor<br>oil | Windshield<br>washer | NaOH 5% | HCI 5% |
|--------------------------|---------|-----------------------|-------------|---------------------|--------------------|----------------------|---------|--------|
| Polymers A<br>and C gave | А       |                       | 1 - 2 hrs   | 2 hrs               |                    |                      |         |        |
| the best                 | В       |                       | 15 min      | 1 hr                |                    | 1 hr                 | 15 min  | 15 min |
| overall<br>results for   | С       |                       | 1 hr        |                     |                    |                      |         |        |
| chemical resistance.     | D       |                       | 15 min      | 2 hrs               |                    | 2 hrs                | 1 hr    |        |
|                          | E       | 6 hrs                 | 15 min      | 2 hrs               | 6 hrs              | 15 min               | 15 min  | 15 min |
|                          | F       |                       | 15 min      | 1 hr                |                    | 15 min               | 1 hr    | 1 hr   |



# Achieving strongest concrete sealer performance driven in part by varying acrylic latex design

#### A Results Summary

- O Polymer A, a harder self-crosslinking acrylic polymer, gave strong performance in basic concrete sealer tests in 100 g/L formulation
- O Traditional acrylic latex such as Polymer C, gave a soft finish but otherwise performed well
- O There was no conclusive advantage to using small particle size or core-shell morphology latex as a sole binder for concrete sealer
- Ocoalescent optimization and particle size blend approaches should be evaluated to determine best potential performance for each individual binder



## Enhancing Concrete Sealer Performance using Novel Self-Crosslinking Acrylic



### Self-Crosslinking Acrylic for Concrete Sealer

Emulsion for horizontal and vertical sealers/coatings for concrete and masonry applications. Highly versatile for formulating clear, tinted and opaque coatings for interior and exterior applications



| Substrates           | Key Benefits                                                                                                                                                                                                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Concrete,<br>masonry | <ul> <li>Nanoparticle, pure acrylic, self-crosslinking<br/>emulsion</li> <li>Excellent early water resistance and blush<br/>resistance</li> <li>Superior abrasion resistance and scrub<br/>resistance</li> <li>Excellent chemical resistance and hot-tire<br/>resistance</li> </ul> |







## Wet-Look Formulation

| Raw Materials                      | lbs/100gal |
|------------------------------------|------------|
| Acrylic (42.5% NV)                 | 555.00     |
| Water                              | 251.78     |
| Glycol Ether PPH                   | 22.00      |
| Non-VOC Coalescent                 | 15.6       |
| Defoamer                           | 2.00       |
| Surfactant / Surface Wetting       | 4.00       |
| Ammonia                            | 0.85       |
| Associative Thickener              | 2.00       |
| Surfactant/Surface Tension Reducer | 1.00       |
| Mildewcide                         | 1.5        |
| BIT – Aqueous Biocide              | 1.5        |
| Total                              | 857.23     |
| % solid Vol                        | 24.6       |
| % Solid WT                         | 22.9       |

- Vinavil Acrylic in Wet-Look formulation compared to a National Brand commercial water-based wet look sealer
- Vinavil Sealer Drawdown Gloss
  - ∆ 20° 68
  - ∆ 60° 85



#### Chemical Stain Resistance (ASTM D1308)

0

**Chemicals Applied** 



**Chemicals Used** New Motor Oil 1 Used Motor Oil 2 Brake Fluid 3 Gasoline 4 Antifreeze 5 Mneral Oil 6 **Rubbing Alcohol** 7 Nail Polish Remover 8 Fantastik 9 Windex 10 Formula 409 11 15% Bleach Solution 12 Hot Coffee 13 Red Wine 14 Mustard 15 Ketchup 16 Total out of 160



#### **Chemicals Removed** - 1 Hour Recovery

## Chemical Stain Resistance (ASTM D1308)

| Chemical Resistance  | Stain # | Chemical            | Vinavil | Commercial Wet<br>Look Sealer |
|----------------------|---------|---------------------|---------|-------------------------------|
|                      | 1       | New Motor Oil       | 10      | 10                            |
|                      | 2       | Used Motor Oil      | 10      | 9                             |
| Automotive Chemicals | 3       | Brake Fluid         | 10      | 9                             |
|                      | 4       | Gasoline            | 10      | 10                            |
|                      | 5       | Antifreeze          | 10      | 10                            |
|                      | 6       | Mneral Oil          | 10      | 10                            |
|                      | 7       | Rubbing Alcohol     | 10      | 9                             |
|                      | 8       | Nail Polish Remover | 10      | 10                            |
|                      | 9       | Fantastik           | 9       | 7                             |
|                      | 10      | Windex              | 10      | 10                            |
| Household Chemicals  | 11      | Formula 409         | 10      | 10                            |
|                      | 12      | 15% Bleach Solution | 10      | 8                             |
|                      | 13      | Hot Coffee          | 8       | 8                             |
|                      | 14      | Red Wine            | 10      | 10                            |
|                      | 15      | Mustard             | 8       | 8                             |
|                      | 16      | Ketchup             | 10      | 10                            |
|                      |         | Total out of 160    | 155     | 148                           |

| Film Changes or<br>Defects           | Fail (0)<br>and Pass<br>(2) |
|--------------------------------------|-----------------------------|
| Film Degradation/Loss<br>of Adhesion | 2                           |
| Discoloration                        | 2                           |
| Gloss Change                         | 2                           |
| Film Softening                       | 2                           |
| Swelling/Blistering                  | 2                           |
| Total Score:                         | 10                          |

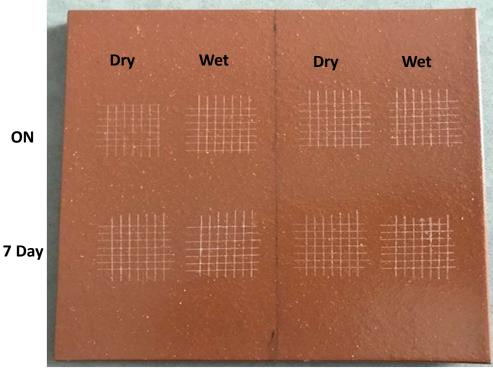
Strong film toughness delivered by Vinavil self-crosslinking acrylic



## **Clear Sealer Blush Resistance on Quarry Tile**



Good blush resistance of both systems in water submersion test. No significant discoloration or whitening observed.

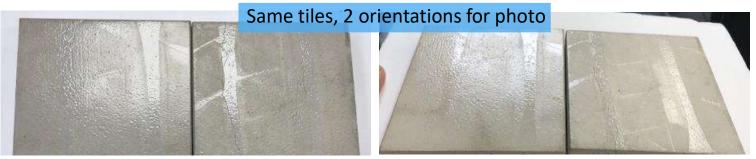



#### 2 Hours submerged underwater

## Adhesion on Quarry Tile - Clear Sealer

Vinavil Concrete Sealer

**Commercial Wet-Look** 




Both Vinavil polymer and the commercial wet-look sealer have desirable adhesion characteristics in dry or wet environments.



## Clear Sealer - Hot Tire Pickup Test

| Hot Tire Pick up    |                                                       | Vinavil Sealer | Commercial Wet Look |
|---------------------|-------------------------------------------------------|----------------|---------------------|
| Coating Pick up     | 1-10 (10 coating fully intact, 0<br>Complete failure) | 10             | 10                  |
| Coating Compression | 1-10 (10 no compression, 1<br>Extreme compression)    | 8              | 6                   |
| Coating Black Mark  | 1-10 (10 No black mark, 1 very<br>dark black mark)    | 9              | 8                   |
| Gloss Loss          |                                                       | Slight         | Significant         |



Vinavil Concrete Sealer Commercial Wet Look Vinavil Concrete Sealer Commercial Wet Look

<u>Tire Condition:</u> Tire Set in the water bath in the 140°F oven for 1 hour <u>Pressure Duration:</u> 2 hours at room temperature <u>PSI:</u> 150



## Concrete Sealer Comparison Summary

| Property                                         | Vinavil Concrete<br>Sealer | Commercial<br>Wet Look |
|--------------------------------------------------|----------------------------|------------------------|
| Gloss "Wet-Look" appearance                      | =                          | =                      |
| Chemical Resistance                              | <mark>Slight +</mark>      | =                      |
| Blush Resistance/Whitening:<br>2 Hour submersion | =                          | =                      |
| Adhesion                                         | =                          | =                      |
| Hot Tire Pickup                                  | +                          | =                      |

Vinavil self-crosslinking acrylic emulsion polymer example gives strong performance for wet-look sealer and possibility for tough applications such as garage floor coatings.



## **Summary and Conclusion**

**OCONCRETE Quality and Composition** 

- Observative concrete sealers must be versatile for use over a range of concrete compositions with varying permeability and porosity
- Nano-particle size acrylic emulsions are capable to form a dense polymer network by packing into concrete pores



## **Summary and Conclusion**

High performance acrylic latex emulsions are capable to formulate low VOC decorative concrete sealers that

o provide tough protective films

display desirable appearance

O demonstrate long term durability

New Self-Crosslinking Acrylic technology delivers strong performance for both water-based concrete sealers and floor coatings



### References

- Kosmatka, Steven H. et al. Design and Control of Concrete Mixtures, 14<sup>th</sup> Edition. Portland Cement Association, 2002.
- O Tepfers, R. "Concrete technology porosity is decisive," ibidem-Verlag, Befestigungstechnik, Bewehrungstechnik und ...II. Stuttgart 2012. ISBN-13: 978-3-8382-0397-3. pp. 571-575.
- In Jennings, H, et al. "Cements as Porous Materials," Handbook of Porous Solids, Chapter 6.11. Wiley, 2002. Online ISBN: 9783527618286.



## Questions?







