Biomass-Derived Coatings Using Renewable, Low-Cost 1,5-Pentanediol

Lei Zheng Advisor: Dr. John Klier University of Massachusetts, Amherst

Department of Chemical Engineering

1,6-Hexanediol is a common monomer used in coating industry

1,6-HDO is from petroleum.

UMassAmherst Pyran has developed a route to produce 1,5-Pentanediol (1,5-PDO) from biomass

1,6-HDO and 1,5-PDO are currently produced from petrochemicals:

• A novel route to synthesize 1,5-PDO from biomass:

- Numerous reaction steps
- Greenhouse gas: N₂O
- Safety hazards
- 1,5-PDO cannot be produced on purpose (only as by-product)
 - Furfural produced from waste biomass
- Avoid toxic regents
- 90% lower GHG
- Only on purpose 1,5-PDO route

ZJ Brentzel, KJ Barnett, K Huang, CT Maravelias, JA Dumesic, GW Huber, Chemicals from Biomass: Combining Ring-opening Tautomerization and Hydrogenation Reactions to Produce 1,5-Pentanediol from Furfural, ChemSusChem, (2017), 10, 1351-1355.

Low cost and renewable 1,5-PDO

Advantages of bio-based 1,5-PDO over 1,6-HDO:

- Sustainable
- Lower greenhouse gas emission
- Fewer reaction steps
- Low-cost, non-edible C5 platform chemicals (furfural)
- Lower cost

	Oil-based 1,5-PDO	Oil-based 1,6-HDO	Renewable 1,5-PDO
Monomers:	но	но	но
Price:	\$5000/ton	\$4000/ton	\$3-4000/ton

1,5-PDO based polyesters have opportunities for use in coatings

> 1,5-PDO based polyesters might be

• Flexible

- Long chain α , ω -diol, -CH₂-
- Odd-even effect
- \rightarrow 1,5-PDO + 1,6-HDO, or 1,5-PDO + adipic acid
- \rightarrow lower glass transition temperature

Crystalline

- Linear α,ω-diols with regular structure
- Rapid drop in viscosity at melt transitions ightarrow high flow
- Odd-even effect \rightarrow lower melting temperature and crystallinity
 - > 1,5-PDO based polyesters impart cured coatings with:
 - Flexibility (e.g. solvent borne, powder, UV-cure, water borne coatings)
 - Surface smoothness (e.g. powder coatings)

Glass transition temperatures of adipate polyesters synthesized from various diols

Objective is to evaluate 1,5-PDO in polyols and coatings

Lei Zheng, Daniel McClelland, Kevin Barnett, George W Huber, John Klier, 1,5-Pentanediol as a Biomass-based Monomer for Polyester Polyols, In preparation

Compare biomass-derived polyols with 1,6-HDO based polyols

Sample	Polymer	Ø _{bio}		A_v	M _n	Tm (°C)	Tg (°C)
	composition	(70)			(Da)	()	(C)
BPDO1	PDO /NPG/HHPA/T - HDI	23.6	172	7	627	/	/
HDO1	HDO/NPG/HHPA/T-HDI	0	163	10	649	/	/
BPDO2	PDO/AA/HHPA	44.8	70	1.8	1498	/	/
HDO2	HDO/AA/HHPA	0	64	4	1604	/	/
BPDO3	PDO-Branched	21.1	45	6.2	8416	/	23±8
HDO3	HDO-Branched	0	41	8.2	8894	/	29±3
BPDO4	PDO/AA	46.8	31.7	1	3789	34/41 (64J/g)	/
HDO4	HDO/AA	0	34.3	0.8	3782	54 (87J/g)	/
BPDO5	PDO/AA/IPA	44.6	53.8	0.3	2028	/	-44±0.7
HDO5	HDO/AA/IPA	0	47.5	0.6	2300	/	-45±1.3

7

1,5-PDO and 1,6-HDO based polyols have similar coating properties

Formulation	Components
Coil Coating	HDO- or PDO-branched polyols/melamine resins/additives
Topcoat coating	HDO- or PDO-based polyester-urethane polyols/isocyanate crosslinker/additives
Flexible coating	HDO- or PDO-based polyester polyols/isocyanate crosslinker/additives

1,5-PDO and 1,6-HDO based polyols have similar coating properties

> Similar hardness, flexibility, adhesion strength and solvent resistance

1,5-PDO provides a lower cost, sustainable and non-petrochemical alternative to 1,6-HDO in coating applications.

Effects of possible impurities from biomass on polyols

Lactones have no effect on polyol functionality

- Model polyesters: 1,5-PDO + adipic acid + 0%, 2%, 5%, 7%, 10% lactone
- Impurities were added "well above" any observed amount in order to observe outsized impact of impurities.

> Lactones do not affect polyol functionality but lower crystallization temperature and crystallization enthalpy.

Mono-alcohols decrease the molecular weight of polyols

- Model polyesters: 1,5-PDO + adipic acid + 0%, 5%, 7% mono-alcohol
- Impurities were added "well above" any observed amount in order to observe outsized impact of impurities.

Fraction of mono- alcohol	Hydroxyl - Value (mg KOH/g)	Acid Value (mg KOH/g)	Equivalent weight	$DP = 1 + \frac{2N_B}{N_A - N_B + N_C}$ When fraction of conversion=1	
0%	23.6	4	2033	N_A : moles of diols	
5%	31.3	2.5	1660	N_B : moles of diacids	
7%	43.8	4	1174	N _C : moles of mono-alcohols	

Pyran is scaling up biobased 1,5-PDO production

- Producing 10 tons of 1,5-PDO by quarter 1 of 2022
- This material will be available to potential partners
- Pyran looking for partners to continue to evaluate 1,5-PDO in polymer applications

Conclusions

- Renewable and highly pure (>98%) 1,5-PDO is successfully produced from biobased furfural.
- Biobased 1,5-PDO containing coatings have projected lower cost than incumbent 1,6-HDO or 1,5-PDO containing coatings.
- Renewable 1,5-PDO based coatings have similar properties to incumbent 1,6-HDO petroleum-based coatings.
- Impurities in biobased 1,5-PDO do not impact the polyol properties.
- 1,5-PDO can replace 1,6-HDO in coating applications.

Acknowledgments

Klier Group at UMass

Advisor: Dr. John Klier

Graduate Students: Shane Taylor Kelsi Skeens Rehmann Mengfei Huang Sam Trevenen Yinghong Liu Jichao Song

Collaborators at Pyran Inc

Dr. George Huber Dr. Kevin Barnett Dr. Daniel McClelland

<u>Funding</u>: Department of energy

Thanks for listening!