

Renewable and Zero VOC Solutions for Bio-based Epoxy and Polyurethane Floor Coatings

Hong Xu (Cardolite, USA) September 9th, 2021

CNSL Technology

- Renewable and sustainable
- Low VOC or zero VOC
- Non-toxic and better labeling
- Application-friendly
- Excellent performance
- Cost-efficient

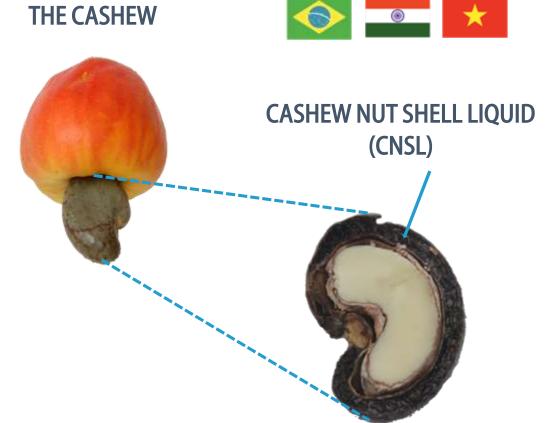
Cashew Nutshell Liquid (CNSL) Technology

Non-edible

Cashew Nutshell Liquid does not interfere with the food chain

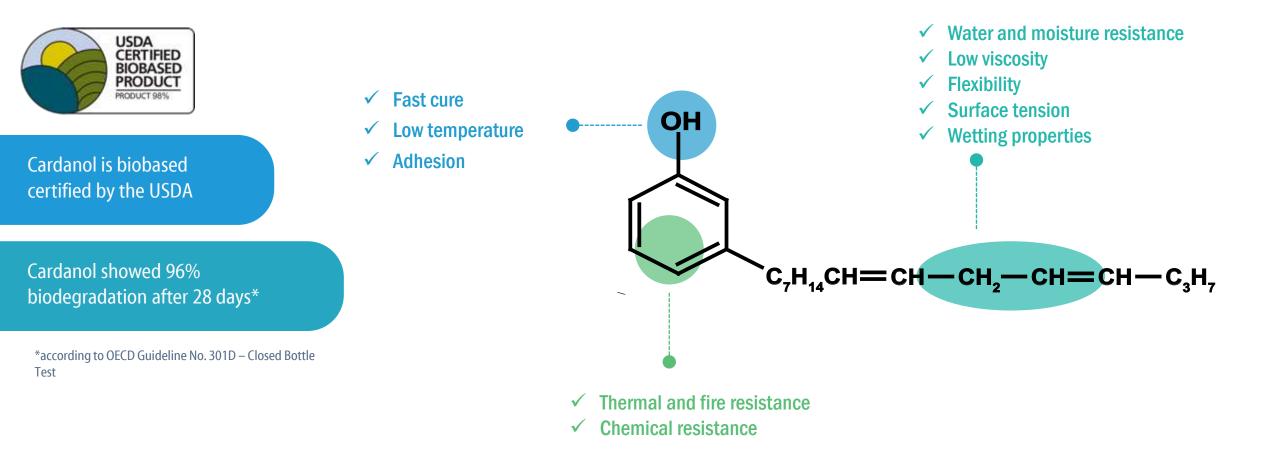
Widely available

Cashew crops are annually renewable and widely grown in many tropical areas along the equator


Versatile chemistry

CNSL can be processed into many functional materials with unique performances

Cost competitive

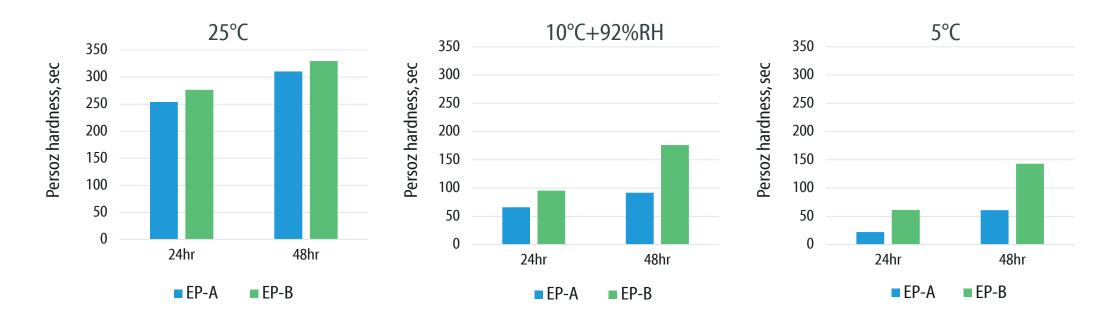

CNSL is a cost competitive resin with stable supply and a long history in the market

Cardanol Structure

Average molecule represented on this slide

Cardanol Derivatives

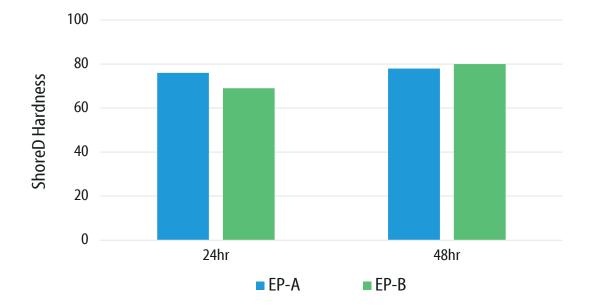
Solvent-free Epoxy Floor Coatings



Phenalkamine Curing Agents

Properties	EP-A	EP-B
Viscosity @ 25°C (cPs)	800-1600	1064
Amine value (mg KOH/g)	300-350	366
Color (Gardner)	≤ 14	8
Recommended (phr, EEW 190)	50 - 70	50 - 70
Gel time @ 25°C (min) with standard liquid epoxy resin	37 (70 phr)	33 (70 phr)
Solvent/benzyl alcohol	No/No	No/No
Free phenol	No	No

Persoz Hardness Development



- Clear coat systems based on C₁₂-C₁₄ aliphatic glycidyl ether modified bisphenol A/F type epoxy resin
- Curing agents: 70 phr
- WFT = 15mils over QD-36 panel

• EP-A and EP-B showed fast hardness development at different cure conditions, especially at low temperatures

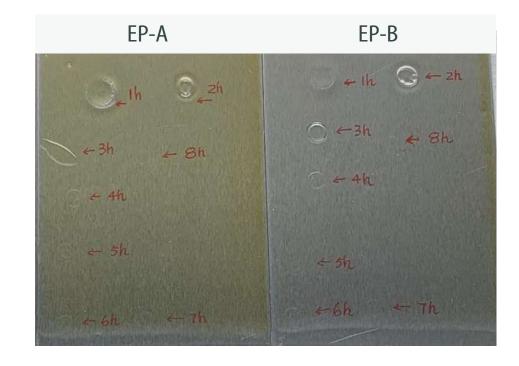
Shore D Hardness Development@25°C

- Clear coat system based on C₁₂-C₁₄ aliphatic glycidyl ether modified bisphenol A/F type epoxy resin
- Curing agents: 70 phr
- 8 grams of mixture in Al pan

• EP-A and EP-B showed fast Shore D hardness development which good for floor applications

Film Appearance @ 10°C / 96%RH Condition

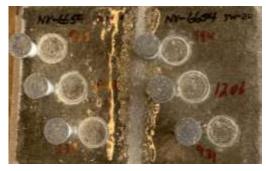
- Clear coat system based on C₁₂-C₁₄ aliphatic glycidyl ether modified bisphenol A/F type epoxy resin
- Curing agents: 70 phr



• EP-A and EP-B showed excellent film appearance and no blush at low temperature and high humidity cure condition

Early Water Resistance

- Clear coat system based on C₁₂-C₁₄ aliphatic glycidyl ether modified bisphenol A/F type epoxy resin
- Curing agents: 70 phr
- WFT = 15 mils over QD-36 panel
- Add one droplet of water over films every hour
- Very tiny marks at 4 hours
- No marks after 4 hours



• EP-A and EP-B systems showed excellent early water resistance, no water marks after 4-hour cure at 25°C condition

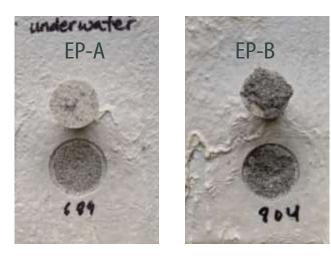
Pull-Off Adhesion to Various Concrete Substrates

EP-A

5W-40

15W-40

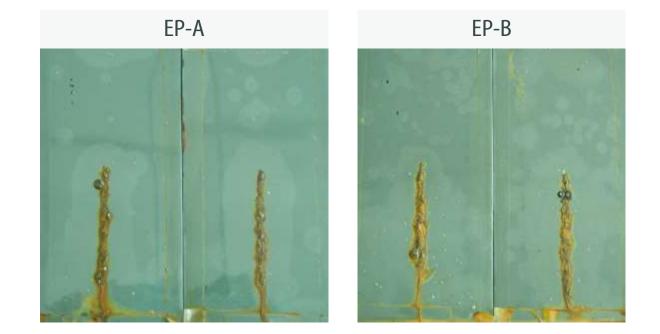
Different concrete surfaces	Pull-off adhesion (psi/MPa)		
Different concrete surfaces	EP-A	EP-B	
Dry concrete @ RT	1030/7.10	1134/7.82	
Damp concrete @ RT	760/5.24	730/5.03	
15W-40 oil contaminated concrete @ 15°C	741/5.11	794/5.47	
5W-20 oil contaminated concrete @ 15°C	838/5.78	1043/7.19	


• EP-A and EP-B primer systems showed excellent adhesions to damp and contaminated concrete substrates

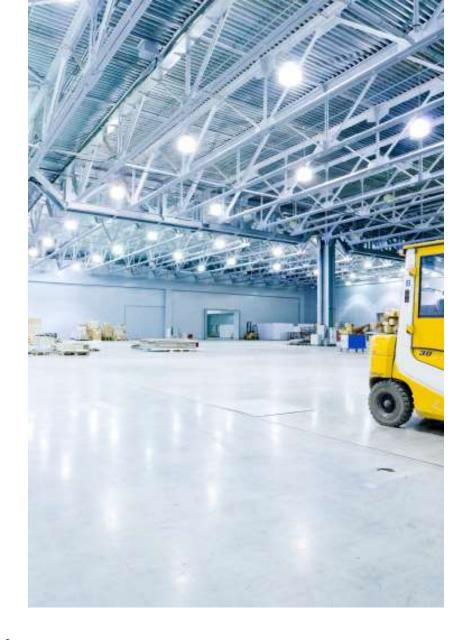
Underwater Cure Properties

Composition	Underwater cure system/g
Liquid epoxy (Bis A type)	28.27
Diluent 2	5.65
Dispersant 2	1.47
Extender 2	11.31
Extender 3	7.12
Extender 4	28.27
EP-A/EP-B	17.91
Total	100.00

After 24 hrs underwater cure @ 15°C	Pull-off adhesion (psi/MPa)	Failure mode
EP-A	689/4.75	100% concrete cohesion
EP-B	804/5.54	100% concrete cohesion



EP-A and EP-B primer systems could cure well underwater and provide excellent adhesions to the underwater concrete


Salt Spray Test - 1000 hrs

- Clear coating systems based on C₁₂-C₁₄ aliphatic glycidyl ether modified bisphenol A/F type epoxy resin
- Curing agents: 70phr
- DFT ~ 2 mils over SA2.5 steel
- 7 days RT cure before exposure

• EP-A and EP-B primer systems showed excellent anti-corrosion performance

Bio-based SF Phenalkamines

- Low viscosity, true solvent free, no benzyl alcohol, no free phenol
- High bio-content
- Fast cure at different cure conditions, especially at low temperatures
- Excellent film appearance, no blush at high humidity condition
- Good adhesions over damp or oil-contaminated concrete substrates
- Excellent underwater cure properties
- Good corrosion resistance
 - EP-A: Compliance with EU-REACH
 - EP-B: Compliance with TSCA

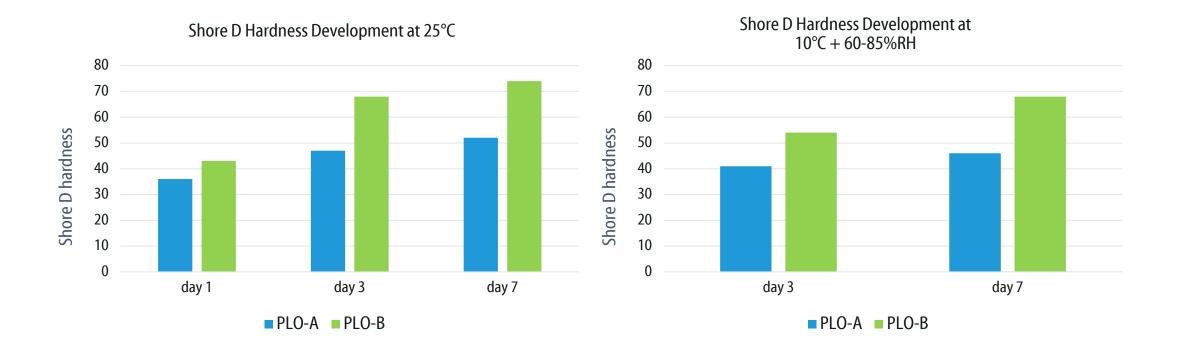
Solvent-free Polyurethane Floor Coatings

Key Components

Polyols	PLO-A	PLO-B	PLO-C	lsocyanates	Polymeric MDI	Aliphatic polyisocynate HD
OH value (mg KOH/g)	170	224	256	NCO content (%)	30.5 - 32.5	21.7 - 22.2
Viscosity at 25°C (cPs)	3000	1710	1200	Viscosity at 25°C (cPs)	160 - 240	2,500 ± 750
Average Functionality	3.2	3.1	4.3	NCO equivalent value	133.3	200
Color (Gardner)	≤ 5	≤ 5	≤ 5	Density at 25°C (g/cm ³)	1.22 - 1.25	/
Bio-content* (%, calculated)	79	62	64	(g/cm²)		

*Calculated values are estimated based on the amount of renewable raw materials used and processing conditions. They should be considered as approximate values. Cardolite makes no representations or warranties, expressed or implied, as to the accuracy of these calculations

• PLO-A, PLO-B and PLO-C provide a range of desirable pot life, viscosity, cure speed and color stability

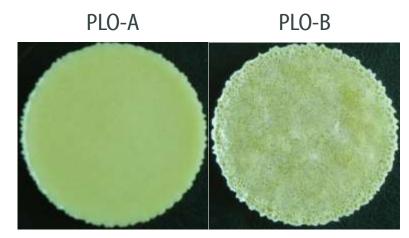

2K Clear PU Formulations

	Part A	PLO-A (g)	PLO-B (g)
	PLO-A	95.7	/
Targets:	PLO-B	/	95.7
Solvent-free systems	Defoamer	0.5	0.5
Low viscosity	Moisture scavenger	3.0	3.0
Fast hardness development	Leveling agent	0.5	0.5
 Good mechanical properties Good chemical resistance 	Subtotal	99.7	99.7
	Polymeric MDI	42.7	56.9
	Total	142.4	156.6
	Admixing viscosity (cPs)	1866	953
	Gel time (mins)	45	52

NCO index 110

Hardness Development

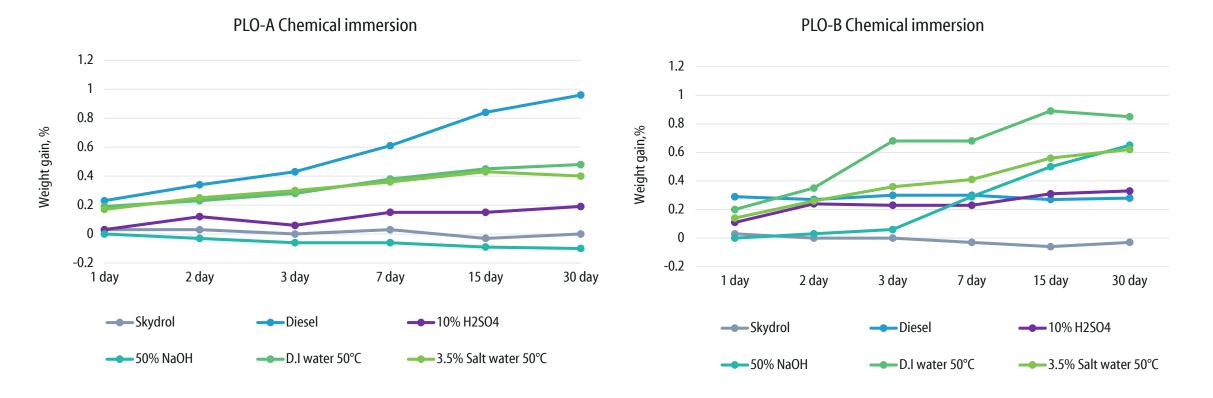
- PLO-A and PLO-B showed fast hardness development
- PLO-A and PLO-B exhibited good hardness development at low temperature and high humidity


Mechanical Properties

	Mechanical Prope	Mechanical Properties		PLO-B
	Mandrel Bend	Mandrel Bend		1/8" pass
	Impact resistance (Kg • cm)	Direct	200	200
 Polymeric MDI NCO index: 110 Cure condition: 7 days at 25°C/40- 	Impact resistance (Kg • cm)	Reverse	200	200
	Cross-hatch adhesion (ove	r QD-36 CRS)	5B	5B
60%RH	Compression strer (MPa, at yield poi	5	No yield points detected, elastomeric PU system	25

- PLO-A and PLO-B systems exhibited very good flexibility and adhesion performance.
- PLO-A based PU system demonstrated excellent elastomeric performance at room temperature (compression test did not show measurable yield points)

Moisture Sensitivity at High Humidity



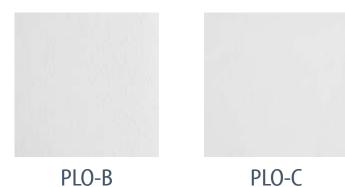
Cured at 28-34°C, 65-95%RH

• PLO-A is more hydrophobic than PLO-B which results in reduced moisture sensitivity during cure under high humidity.

Chemical Resistance

- Polymeric MDI, NCO index 110
- 7-day RT cure before immersion test

• PLO-A and PLO-B systems showed good chemical resistance to acid, alkaline, salt solutions, skydrol and Diesel



Company Confidential

2K Pigmented PU Systems

Targets:

- **Balanced cure properties**
- Good mechanical properties
- Improved color stability

Cure condition: 7 days at 25°C/40-60%RH

7 /
36.7
4.0
0.5
3.0
6.0
5 16.5
0 11.0
3 0.03
1.0
0.5
9 36.1
.0 119.7

2K Pigmented PU Systems: Cure Properties

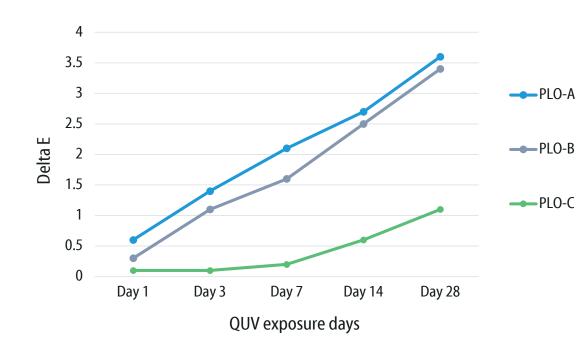
Properties	Admixing viscosity at 25°C (cPs)	Gel time at 25°C (mins)
PLO-B	5309	289
PLO-C	5549	154

PLO-B and PLO-C showed medium admixing viscosities and long gel times

Sustance	Cure	Har	Hardness (Shore A/D)*			
Systems	Temperature	Day 1	Day 3	Day 7		
PLO-B	25°C	67(A)	16(D)	23(D)		
PLO-C	25°C	75(A)	21(D)	27(D)		
PLO-B	10°C	Soft	75(A)	23(D)		
PLO-C	10°C	49(A)	81(A)	28(D)		

*A =Shore A, D = Shore D

• PLO-B and PLO-C systems exhibited good hardness development when combined with HDI type isocyanate


Mechanical Properties

Mechanical properties		PLO-B	PLO-C
Mandrel	Bend	1/8" pass	1/8" pass
Impact resistance (Kg • cm)	Direct	200	200
Impact resistance (Kg • cm)	Reverse	200	200
Cross-hatch adhesion (over QD-36 CRS substrate)		5B	4B
Abrasion (100	0 cycle/mg)	78	80

- NCO index:110
- Cure condition: 7 days at 25°C/40-60%RH
 - PLO-B and PLO-C showed very good flexibility and adhesion
 - Good abrasion resistance can be achieved by PLO-B and PLO-C

Color Stability: QUV-A Exposure

Part A	Weight (g)
Polyols (PLO-A, PLO-B or PLO-C)	38.94
BYK-163	0.56
Titanium Dioxide	22.32
MICA	28.08
Barium Sulfate	10.10
Total	100.00
HDI*	25.37/33.43/38.20
* Aliphatic polyisocyanate (HDI trimer)	

* Aliphatic polyisocyanate (HDI trimer) Weight (%) polyol order: PLO-A, PLO-B, PLO-C

PLO-C showed the best color stability after QUV-A exposure

Renewable SF Polyols

- PLO-A and PLO-B combined with polymeric MDI could offer fast cure, good hardness development, and excellent chemical resistance
- PLO-B and PLO-C combined with HDI could provide medium admixing viscosity, long pot life, reasonable cure speed, and excellent flexibility, adhesion and abrasion resistance
- PLO-C could display excellent color stability when exposed to UV light

Thank you!

www.cardolite.com

in f

Global Headquarters

Cardolite Corporation 140 Wharton Road Bristol, PA 19007 United States of America Phone: +1-800-322-7365

European Office

Cardolite Specialty Chemicals Europe NV Wijmenstraat 21K / 2 B-9030 Mariakerke (Gent) Belgium Phone: +32 (0) 92658826

India Factory

Cardolite Specialty Chemicals India LLP Plot No. IP-1 & IP-2, Mangalore Special Economic Zone Bajpe, Mangalore 574 142 India Phone: +91 (0) 824 2888 300

China Factory

Cardolite Chemical Zhuhai Ltd. 1248 Ninth Shihua Road Gaolan Port Economic Zone Zhuhai, Guangdong 519050 P.R. China Phone: +86 756 726 9066

